Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.604
Filtrar
1.
Cell ; 187(8): 2010-2028.e30, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38569542

RESUMEN

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Humanos , Ratones , Colitis/metabolismo , Colitis/patología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Hibridación Fluorescente in Situ/métodos , Inflamación/metabolismo , Inflamación/patología , Comunicación Celular , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/patología
2.
Nat Commun ; 15(1): 3018, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589357

RESUMEN

Ionizing radiation induces cell death in the gastrointestinal (GI) epithelium by activating p53. However, p53 also prevents animal lethality caused by radiation-induced acute GI syndrome. Through single-cell RNA-sequencing of the irradiated mouse small intestine, we find that p53 target genes are specifically enriched in regenerating epithelial cells that undergo fetal-like reversion, including revival stem cells (revSCs) that promote animal survival after severe damage of the GI tract. Accordingly, in mice with p53 deleted specifically in the GI epithelium, ionizing radiation fails to induce fetal-like revSCs. Using intestinal organoids, we show that transient p53 expression is required for the induction of revival stem cells and is controlled by an Mdm2-mediated negative feedback loop. Together, our findings reveal that p53 suppresses severe radiation-induced GI injury by promoting fetal-like reprogramming of irradiated intestinal epithelial cells.


Asunto(s)
Traumatismos por Radiación , Proteína p53 Supresora de Tumor , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Intestinos , Tracto Gastrointestinal/metabolismo , Traumatismos por Radiación/genética , Traumatismos por Radiación/metabolismo , Células Madre/metabolismo , Apoptosis/genética
3.
J Med Microbiol ; 73(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38629677

RESUMEN

With the development of social economy, the incidence of gout is increasing, which is closely related to people's increasingly rich diet. Eating a diet high in purine, fat, sugar and low-fibre for a long time further aggravates gout by affecting uric acid metabolism. The renal metabolism mechanism of uric acid has been thoroughly studied. To find a new treatment method for gout, increasing studies have recently been conducted on the mechanism of intestinal excretion, metabolism and absorption of uric acid. The most important research is the relationship between intestinal microbiota and the risk of gout. Gut microbiota represent bacteria that reside in a host's gastrointestinal tract. The composition of the gut microbiota is associated with protection against pathogen colonization and disease occurrence. This review focuses on how gut microbiota affects gout through uric acid and discusses the types of bacteria that may be involved in the occurrence and progression of gout. We also describe potential therapy for gout by restoring gut microbiota homeostasis and reducing uric acid levels. We hold the perspective that changing intestinal microbiota may become a vital method for effectively preventing or treating gout.


Asunto(s)
Microbioma Gastrointestinal , Gota , Humanos , Ácido Úrico/metabolismo , Gota/metabolismo , Tracto Gastrointestinal/metabolismo , Bacterias/metabolismo
4.
J Hazard Mater ; 470: 134269, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613952

RESUMEN

Mercury (Hg) is one of the most widespread pollutants that pose serious threats to public health and the environment. People are inevitably exposed to Hg via different routes, such as respiration, dermal contact, drinking or diet. Hg poisoning could cause gingivitis, inflammation, vomiting and diarrhea, respiratory distress or even death. Especially during the developmental stage, there is considerable harm to the brain development of young children, causing serious symptoms such as intellectual disability and motor impairments, and delayed neural development. Therefore, it's of great significance to develop a specific, quick, practical and labor-saving assay for monitoring Hg2+. Herein, a mitochondria-targeted dual (excitation 700 nm and emission 728 nm) near-infrared (NIR) fluorescent probe JZ-1 was synthesized to detect Hg2+, which is a turn-on fluorescent probe designed based on the rhodamine fluorophore thiolactone, with advantages of swift response, great selectivity, and robust anti-interference capability. Cell fluorescence imaging results showed that JZ-1 could selectively target mitochondria in HeLa cells and monitor exogenous Hg2+. More importantly, JZ-1 has been successfully used to monitor gastrointestinal damage of acute mercury poisoning in a drug-induced mouse model, which provided a great method for sensing Hg species in living subjects, as well as for prenatal diagnosis.


Asunto(s)
Colorantes Fluorescentes , Intoxicación por Mercurio , Mercurio , Mitocondrias , Colorantes Fluorescentes/química , Mitocondrias/efectos de los fármacos , Humanos , Animales , Células HeLa , Intoxicación por Mercurio/diagnóstico por imagen , Mercurio/toxicidad , Imagen Óptica , Ratones , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/diagnóstico por imagen , Tracto Gastrointestinal/metabolismo , Femenino , Enfermedades Gastrointestinales/diagnóstico por imagen , Enfermedades Gastrointestinales/inducido químicamente , Rodaminas/química , Rodaminas/toxicidad
5.
Food Funct ; 15(8): 3959-3979, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38568171

RESUMEN

The majority of known peptides with high bioactivity (BAPs) such as antihypertensive, antidiabetic, antioxidant, hypocholesterolemic, anti-inflammatory and antimicrobial actions, are short-chain sequences of less than ten amino acids. These short-chain BAPs of varying natural and synthetic origin must be bioaccessible to be capable of being adsorbed systemically upon oral administration to show their full range of bioactivity. However, in general, in vitro and in vivo studies have shown that gastrointestinal digestion reduces BAPs bioactivity unless they are protected from degradation by encapsulation. This review gives a critical analysis of short-chain BAP encapsulation and performance with regard to the oral delivery route. In particular, it focuses on short-chain BAPs with antihypertensive and antidiabetic activity and encapsulation methods via nanoparticles and microparticles. Also addressed are the different wall materials used to form these particles and their associated payloads and release kinetics, along with the current challenges and a perspective of the future applications of these systems.


Asunto(s)
Tracto Gastrointestinal , Péptidos , Humanos , Péptidos/química , Péptidos/administración & dosificación , Tracto Gastrointestinal/metabolismo , Animales , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Administración Oral , Composición de Medicamentos , Digestión , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química
6.
Molecules ; 29(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474665

RESUMEN

Vitamin D3 deficiency is a global phenomenon, which can be managed with supplementation and food fortification. However, vitamin D3 bioaccessibility may depend on factors such as matrix composition and interactions throughout the gastrointestinal (GI) tract. This research focused on the effect of different matrices on vitamin D3 content during digestion, as well as the effect of pH on its bioaccessibility. The INFOGEST protocol was employed to simulate digestion. Three different types of commercial supplements, two foods naturally rich in vitamin D3, and three fortified foods were investigated. High-Performance Liquid Chromatography was used to determine the initial vitamin D3 content in the supplements and foods, as well as after each digestion stage. The results indicate that the foods exhibited higher bioaccessibility indices compared to the supplements and a higher percentage retention at the end of the gastric phase. The pH study revealed a positive correlation between an increased gastric pH and the corresponding content of vitamin D3. Interestingly, exposing the matrix to a low pH during the gastric phase resulted in an increased intestinal content of D3. Vitamin D3 is more bioaccessible from foods than supplements, and its bioaccessibility is susceptible to changes in gastric pH. Fasting conditions (i.e., gastric pH = 1) enhance the vitamin's bioaccessibility.


Asunto(s)
Colecalciferol , Suplementos Dietéticos , Colecalciferol/química , Suplementos Dietéticos/análisis , Alimentos Fortificados/análisis , Tracto Gastrointestinal/metabolismo , Concentración de Iones de Hidrógeno , Digestión , Disponibilidad Biológica
7.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38483214

RESUMEN

The influence of systemic immune activation on whole-body calcium (Ca) trafficking and gastrointestinal tract (GIT) physiology is not clear. Thus, the study objectives were to characterize the effects of lipopolysaccharide (LPS) on Ca pools and GIT dynamics to increase understanding of immune-induced hypocalcemia, ileus, and stomach hemorrhaging. Twelve crossbred pigs [44 ±â€…3 kg body weight (BW)] were randomly assigned to 1 of 2 intramuscular treatments: (1) control (CON; 2 mL saline; n = 6) or (2) LPS (40 µg LPS/kg BW; n = 6). Pigs were housed in metabolism stalls to collect total urine and feces for 6 h after treatment administration, at which point they were euthanized, and various tissues, organs, fluids, and digesta were weighed, and analyzed for Ca content. Data were analyzed with the MIXED procedure in SAS 9.4. Rectal temperature and respiration rate increased in LPS relative to CON pigs (1.4 °C and 32%, respectively; P ≤ 0.05). Inflammatory biomarkers such as circulating alkaline phosphatase, aspartate aminotransferase, and total bilirubin increased in LPS compared with CON pigs whereas albumin decreased (P ≤ 0.02). Plasma glucose and urea nitrogen decreased and increased, respectively, after LPS (43% and 80%, respectively; P < 0.01). Pigs administered LPS had reduced circulating ionized calcium (iCa) compared to CON (15%; P < 0.01). Considering estimations of total blood volume, LPS caused an iCa deficit of 23 mg relative to CON (P < 0.01). Adipose tissue and urine from LPS pigs had reduced Ca compared to CON (39% and 77%, respectively; P ≤ 0.05). There did not appear to be increased Ca efflux into GIT contents and no detectable increases in other organ or tissue Ca concentrations were identified. Thus, while LPS caused hypocalcemia, we were unable to determine where circulating Ca was trafficked. LPS administration markedly altered GIT dynamics including stomach hemorrhaging, diarrhea (increased fecal output and moisture), and reduced small intestine and fecal pH (P ≤ 0.06). Taken together, changes in GIT physiology suggested dyshomeostasis and alimentary pathology. Future research is required to fully elucidate the etiology of immune activation-induced hypocalcemia and GIT pathophysiology.


Lipopolysaccharide (LPS) activates the immune system and this is accompanied with hypocalcemia and altered gastrointestinal tract (GIT) physiology. The study objectives were to characterize whole-body calcium (Ca) trafficking and evaluate GIT dynamics during LPS-induced immune activation. Ca concentrations were analyzed after intramuscular LPS injection. Administering LPS caused marked alterations in metabolic and inflammatory biomarkers and GIT dynamics, characterized by increased lower GIT motility and stomach hemorrhaging. Circulating Ca and adipose tissue and urine Ca output were decreased after LPS. Ca concentrations in other tissues and GIT contents were not detectably different. Thus, we were unable to account for about 110 mg Ca following LPS. Where and how circulating Ca is partitioned during immune activation remains unclear.


Asunto(s)
Calcio , Tracto Gastrointestinal , Lipopolisacáridos , Animales , Lipopolisacáridos/farmacología , Porcinos , Calcio/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Masculino , Femenino , Enfermedades de los Porcinos/inducido químicamente , Distribución Aleatoria
8.
Int J Nanomedicine ; 19: 2973-2992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544951

RESUMEN

Background: For maintenance therapy in type 2 diabetes, glucagon-like peptide-1 agonist (GLP-1A), which exhibits low cardiovascular risk and high efficacy, is a promising peptide therapeutic. However, developing an oral GLP-1A presents challenges due to the analog's poor cellular permeability and gastrointestinal (GI) stability. Methods: To mitigate such limitations, an oral nanoformulation of liraglutide (LG) was designed and achieved by combining LG with bile acid derivatives using the nanoprecipitation method. This strategy allowed the bile acid moieties to localize at the nanoparticle surface, enhancing the binding affinity for apical sodium-dependent bile acid transporter (ASBT) and improving GI stability. The in vitro characteristics, cellular permeability, and absorption mechanisms of the LG nanoformulation (LG/TD-NF) were thoroughly investigated. Furthermore, the in vivo oral absorption in rats and the glucose-lowering effects in a diabetic (db/db) mouse model were evaluated. Results: The LG/TD-NF produced neutral nanoparticles with a diameter of 58.7 ± 4.3 nm and a zeta potential of 4.9 ± 0.4 mV. Notably, when exposed to simulated gastric fluid, 65.7 ± 3.6% of the LG/TD-NF remained stable over 120 min, while free LG was fully degraded. Relative to unformulated LG, the Caco-2 cellular permeability of the nanoformulation improved, measuring 10.9 ± 2.1 (× 10-6 cm/s). The absorption mechanism prominently featured endocytosis simultaneously mediated by both ASBT and epidermal growth factor receptor (EGFR). The oral bioavailability of the LG/TD-NF was determined to be 3.62% at a dosage of 10 mg/kg, which is 45.3 times greater than that of free LG. In a diabetes model, LG/TD-NF at 10 mg/kg/day exhibited commendable glucose sensitivity and reduced HbA1c levels by 4.13% within 28 days, similar to that of subcutaneously administered LG at a dosage of 0.1 mg/kg/day. Conclusion: The oral LG/TD-NF promotes ASBT/EGFR-mediated transcytosis and assures cellular permeability within the GI tract. This method holds promise for the development of oral GLP-1A peptides as an alternative to injections, potentially enhancing patient adherence to maintenance therapy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Liraglutida , Humanos , Ratones , Ratas , Animales , Liraglutida/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Células CACO-2 , Péptido 1 Similar al Glucagón/uso terapéutico , Tracto Gastrointestinal/metabolismo , Ácidos y Sales Biliares , Glucosa , Receptores ErbB , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
9.
Biol Pharm Bull ; 47(4): 750-757, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556260

RESUMEN

Breast cancer resistance protein (BCRP) is a drug efflux transporter expressed on the epithelial cells of the small intestine and on the lateral membrane of the bile duct in the liver; and is involved in the efflux of substrate drugs into the gastrointestinal lumen and secretion into bile. Recently, the area under the plasma concentration-time curve (AUC) of rosuvastatin (ROS), a BCRP substrate drug, has been reported to be increased by BCRP inhibitors, and BCRP-mediated drug-drug interaction (DDI) has attracted attention. In this study, we performed a ROS uptake study using human colon cancer-derived Caco-2 cells and confirmed that BCRP inhibitors significantly increased the intracellular accumulation of ROS. The correlation between the cell to medium (C/M) ratio of ROS obtained by the in vitro study and the absorption rate constant (ka) ratio obtained by clinical analysis was examined, and a significant positive correlation was observed. Therefore, it is suggested that the in vitro study using Caco-2 cells could be used to quantitatively estimate BCRP-mediated DDI with ROS in the gastrointestinal tract.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas de Neoplasias , Humanos , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Células CACO-2 , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Neoplasias/metabolismo , Interacciones Farmacológicas , Rosuvastatina Cálcica , Tracto Gastrointestinal/metabolismo
10.
Nature ; 628(8007): 424-432, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509359

RESUMEN

Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.


Asunto(s)
Neoplasias Colorrectales , Fusobacterium nucleatum , Animales , Humanos , Ratones , Adenoma/microbiología , Estudios de Casos y Controles , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Heces/microbiología , Fusobacterium nucleatum/clasificación , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/aislamiento & purificación , Fusobacterium nucleatum/patogenicidad , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Genoma Bacteriano/genética , Boca/microbiología , Femenino
11.
Food Res Int ; 182: 114182, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519194

RESUMEN

Lactoferrin (LF) is a thermally sensitive iron-binding globular glycoprotein. Heat treatment can induce its denaturation and aggregation and thus affect its functional activity. In this study, carrageenan (CG), xanthan gum (XG) and locust bean gum (LBG), allowed to apply in infant food, were used to form protein-polysaccharide complexes to improve the thermal stability of LF. Meanwhile, in vitro simulated infant digestion and absorption properties of LF were also estimated. The results showed that the complexes formed by CG and XG with LF (LF-CG and LF-XG) could significantly inhibit the loss of α-helix structure of LF against heating. LF-CG and LF-LBG could protect LF from digestion in simulated infant gastric fluid and slow down the degradation of LF under the simulated intestinal conditions. Besides, LF, LF-CG and LF-XG showed no adverse effects on the growth of Caco-2 cells in the LF concentration range of 10-300 µg/mL, and LF-XG exhibited better beneficial to improve the cell uptake of the digestive product than the other protein-polysaccharides at the LF concentration of 100 µg/mL. This study may provide a reference for the enhancement of thermal processing stability of LF and development infant food ingredient with high nutrients absorption efficiency in the gastrointestinal environment in the future.


Asunto(s)
Tracto Gastrointestinal , Lactoferrina , Lactante , Humanos , Lactoferrina/química , Células CACO-2 , Fenómenos Químicos , Tracto Gastrointestinal/metabolismo
12.
J Agric Food Chem ; 72(9): 4958-4976, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38381611

RESUMEN

Previously, we found that whey proteins form biomolecular coronas around titanium dioxide (TiO2) nanoparticles. Here, the gastrointestinal fate of whey protein-coated TiO2 nanoparticles and their interactions with gut microbiota were investigated. The antioxidant activity of protein-coated nanoparticles was enhanced after simulated digestion. The structure of the whey proteins was changed after they adsorbed to the surfaces of the TiO2 nanoparticles, which reduced their hydrolysis under simulated gastrointestinal conditions. The presence of protein coronas also regulated the impact of the TiO2 nanoparticles on colonic fermentation, including promoting the production of short-chain fatty acids. Bare TiO2 nanoparticles significantly increased the proportion of harmful bacteria and decreased the proportion of beneficial bacteria, but the presence of protein coronas alleviated this effect. In particular, the proportion of beneficial bacteria, such as Bacteroides and Bifidobacterium, was enhanced for the coated nanoparticles. Our results suggest that the formation of a whey protein corona around TiO2 nanoparticles may have beneficial effects on their behavior within the colon. This study provides valuable new insights into the potential impact of protein coronas on the gastrointestinal fate of inorganic nanoparticles.


Asunto(s)
Nanopartículas , Corona de Proteínas , Proteína de Suero de Leche/metabolismo , Suero Lácteo/metabolismo , Corona de Proteínas/metabolismo , Tracto Gastrointestinal/metabolismo , Nanopartículas/química , Bacterias/metabolismo , Titanio/química
13.
Molecules ; 29(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338313

RESUMEN

Conditions in the gastrointestinal tract and microbial metabolism lead to biotransformation of parent, native phenolic compounds from apples into different chemical forms. The aim of this work was to review current knowledge about the forms of phenolic compounds from apples in the gastrointestinal tract and to connect it to their potential beneficial effects, including the mitigation of health problems of the digestive tract. Phenolic compounds from apples are found in the gastrointestinal tract in a variety of forms: native (flavan-3-ols, phenolic acids, flavonols, dihydrochalcones, and anthocyanins), degradation products, various metabolites, and catabolites. Native forms can show beneficial effects in the stomach and small intestine and during the beginning phase of digestion in the colon. Different products of degradation and phase II metabolites can be found in the small intestine and colon, while catabolites might be important for bioactivities in the colon. Most studies connect beneficial effects for different described health problems to the whole apple or to the amount of all phenolic compounds from apples. This expresses the influence of all native polyphenols from apples on beneficial effects. However, further studies of the peculiar compounds resulting from native phenols and their effects on the various parts of the digestive tract could provide a better understanding of the specific derivatives with bioactivity in humans.


Asunto(s)
Malus , Humanos , Malus/química , Frutas/química , Antocianinas/análisis , Fenoles/análisis , Polifenoles/análisis , Tracto Gastrointestinal/metabolismo
14.
Front Immunol ; 15: 1349428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38420120

RESUMEN

The midgut, a vital component of the digestive system in arthropods, serves as an interface between ingested food and the insect's physiology, playing a pivotal role in nutrient absorption and immune defense mechanisms. Distinct cell types, including columnar, enteroendocrine, goblet and regenerative cells, comprise the midgut in insects and contribute to its robust immune response. Enterocytes/columnar cells, the primary absorptive cells, facilitate the immune response through enzyme secretions, while regenerative cells play a crucial role in maintaining midgut integrity by continuously replenishing damaged cells and maintaining the continuity of the immune defense. The peritrophic membrane is vital to the insect's innate immunity, shielding the midgut from pathogens and abrasive food particles. Midgut juice, a mixture of digestive enzymes and antimicrobial factors, further contributes to the insect's immune defense, helping the insect to combat invading pathogens and regulate the midgut microbial community. The cutting-edge single-cell transcriptomics also unveiled previously unrecognized subpopulations within the insect midgut cells and elucidated the striking similarities between the gastrointestinal tracts of insects and higher mammals. Understanding the intricate interplay between midgut cell types provides valuable insights into insect immunity. This review provides a solid foundation for unraveling the complex roles of the midgut, not only in digestion but also in immunity. Moreover, this review will discuss the novel immune strategies led by the midgut employed by insects to combat invading pathogens, ultimately contributing to the broader understanding of insect physiology and defense mechanisms.


Asunto(s)
Bombyx , Animales , Tracto Gastrointestinal/metabolismo , Insectos , Perfilación de la Expresión Génica , Inmunidad Innata , Mamíferos
15.
Int J Biol Macromol ; 262(Pt 2): 129551, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367416

RESUMEN

Transient receptor potential (TRP) channels are cation channels related to a wide range of physical and chemical stimuli, they are expressed all along the gastrointestinal system, and a myriad of diseases are often associated with aberrant expression or mutation of the TRP gene, suggesting that TRPs are promising targets for drug therapy. Therefore, a better understanding of the information of TRPs in health and disease could facilitate the development of effective drugs for the treatment of gastrointestinal diseases like IBD. But there are very few generalizations about the experimental techniques studied in this field. In view of the promise of TRP as a therapeutic target, we discuss experimental methods that can be used for TRPs including their distribution, function and interaction with other proteins, as well as some promising emerging technologies to provide experimental methods for future studies.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Tracto Gastrointestinal/metabolismo
16.
Int. microbiol ; 27(1): 127-142, Feb. 2024. graf
Artículo en Inglés | IBECS | ID: ibc-230249

RESUMEN

Digestive and respiratory tracts are inhabited by rich bacterial communities that can vary between their different segments. In comparison with other bird taxa with developed caeca, parrots that lack caeca have relatively lower variability in intestinal morphology. Here, based on 16S rRNA metabarcoding, we describe variation in microbiota across different parts of parrot digestive and respiratory tracts both at interspecies and intraspecies levels. In domesticated budgerigar (Melopsittacus undulatus), we describe the bacterial variation across eight selected sections of respiratory and digestive tracts, and three non-destructively collected sample types (faeces, and cloacal and oral swabs). Our results show important microbiota divergence between the upper and lower digestive tract, but similarities between respiratory tract and crop, and also between different intestinal segments. Faecal samples appear to provide a better proxy for intestinal microbiota composition than the cloacal swabs. Oral swabs had a similar bacterial composition as the crop and trachea. For a subset of tissues, we confirmed the same pattern also in six different parrot species. Finally, using the faeces and oral swabs in budgerigars, we revealed high oral, but low faecal microbiota stability during a 3-week period mimicking pre-experiment acclimation. Our findings provide a basis essential for microbiota-related experimental planning and result generalisation in non-poultry birds.(AU)


Asunto(s)
Humanos , Animales , Loros/metabolismo , Tracto Gastrointestinal/microbiología , Microbiota , Bacterias/genética , ARN Ribosómico 16S/genética , Sistema Respiratorio/microbiología , Tracto Gastrointestinal/metabolismo , Microbiología , Técnicas Microbiológicas , Microbiota/genética , Periquitos
17.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38396782

RESUMEN

Amyloid-ß (Aß) proteotoxicity is associated with Alzheimer's disease (AD) and is caused by protein aggregation, resulting in neuronal damage in the brain. In the search for novel treatments, Drosophila melanogaster has been extensively used to screen for anti-Aß proteotoxic agents in studies where toxic Aß peptides are expressed in the fly brain. Since drug molecules often are administered orally there is a risk that they fail to reach the brain, due to their inability to cross the brain barrier. To circumvent this problem, we have designed a novel Drosophila model that expresses the Aß peptides in the digestive tract. In addition, a built-in apoptotic sensor provides a fluorescent signal from the green fluorescent protein as a response to caspase activity. We found that expressing different variants of Aß1-42 resulted in proteotoxic phenotypes such as reduced longevity, aggregate deposition, and the presence of apoptotic cells. Taken together, this gut-based Aß-expressing fly model can be used to study the mechanisms behind Aß proteotoxicity and to identify different substances that can modify Aß proteotoxicity.


Asunto(s)
Enfermedad de Alzheimer , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Péptidos beta-Amiloides/genética , Tracto Gastrointestinal/metabolismo , Modelos Animales de Enfermedad
18.
Compr Rev Food Sci Food Saf ; 23(1): e13292, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284593

RESUMEN

The human gastrointestinal (GI) tract microbiome secretes various metabolites that play pivotal roles in maintaining host physiological balance and influencing disease progression. Among these metabolites, bacteriocins-small, heat-stable peptides synthesized by ribosomes-are notably prevalent in the GI region. Their multifaceted benefits have garnered significant interest in the scientific community. This review comprehensively explores the methods for mining bacteriocins (traditional separation and purification, bioinformatics, and artificial intelligence), their effects on the stomach and intestines, and their complex bioactive mechanisms. These mechanisms include flora regulation, biological barrier restoration, and intervention in epithelial cell pathways. By detailing each well-documented bacteriocin, we reveal the diverse ways in which bacteriocins interact with the GI environment. Moreover, the future research direction is prospected. By further studying the function and interaction of intestinal bacteriocins, we can discover new pharmacological targets and develop drugs targeting intestinal bacteriocins to regulate and improve human health. It provides innovative ideas and infinite possibilities for further exploration, development, and utilization of bacteriocins. The inevitable fact is that the continuously exploration of bacteriocins is sure to bring the promising future for demic GI health understanding and interference strategy.


Asunto(s)
Bacteriocinas , Microbiota , Humanos , Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Inteligencia Artificial , Tracto Gastrointestinal/metabolismo , Estómago
19.
Mol Autism ; 15(1): 4, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233886

RESUMEN

BACKGROUND: Gastrointestinal symptoms and inflammatory gastrointestinal diseases exist at higher rates in the autistic population. It is not clear however whether autism is associated with elevated gastrointestinal inflammation as studies examining non-invasive faecal biomarkers report conflicting findings. To understand the research landscape and identify gaps, we performed a systematic review and meta-analysis of studies measuring non-invasive markers of gastrointestinal inflammation in autistic and non-autistic samples. Our examination focused on faecal biomarkers as sampling is non-invasive and these markers are a direct reflection of inflammatory processes in the gastrointestinal tract. METHODS: We extracted data from case-control studies examining faecal markers of gastrointestinal inflammation. We searched PubMed, Embase, Cochrane CENTRAL, CINAHL, PsycINFO, Web of Science Core Collection and Epistemonikos and forward and backwards citations of included studies published up to April 14, 2023 (PROSPERO CRD42022369279). RESULTS: There were few studies examining faecal markers of gastrointestinal inflammation in the autistic population, and many established markers have not been studied. Meta-analyses of studies examining calprotectin (n = 9) and lactoferrin (n = 3) were carried out. A total of 508 autistic children and adolescents and 397 non-autistic children and adolescents were included in the meta-analysis of calprotectin studies which found no significant group differences (ROM: 1.30 [0.91, 1.86]). Estimated differences in calprotectin were lower in studies with siblings and studies which did not exclude non-autistic controls with gastrointestinal symptoms. A total of 139 autistic participants and 75 non-autistic controls were included in the meta-analysis of lactoferrin studies which found no significant group differences (ROM: 1.27 [0.79, 2.04]). LIMITATIONS: All studies included in this systematic review and meta-analysis examined children and adolescents. Many studies included non-autistic controls with gastrointestinal symptoms which limit the validity of their findings. The majority of studies of gastrointestinal inflammation focused on children under 12 with few studies including adolescent participants. Most studies that included participants aged four or under did not account for the impact of age on calprotectin levels. Future studies should screen for relevant confounders, include larger samples and explore gastrointestinal inflammation in autistic adolescents and adults. CONCLUSIONS: There is no evidence to suggest higher levels of gastrointestinal inflammation as measured by calprotectin and lactoferrin are present in autistic children and adolescents at the population level. Preliminary evidence suggests however that higher calprotectin levels may be present in a subset of autistic participants, who may be clinically characterised by more severe gastrointestinal symptoms and higher levels of autistic traits.


Asunto(s)
Trastorno Autístico , Adolescente , Niño , Humanos , Biomarcadores/análisis , Tracto Gastrointestinal/química , Tracto Gastrointestinal/metabolismo , Inflamación , Lactoferrina/análisis , Lactoferrina/metabolismo , Complejo de Antígeno L1 de Leucocito/análisis
20.
Adv Clin Chem ; 118: 111-154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38280804

RESUMEN

This chapter attempts to provide an all-round picture of a dynamic and major branch of modern endocrinology, i.e. the gastrointestinal endocrinology. The advances during the last half century in our understanding of the dimensions and diversity of gut hormone biology - inside as well as outside the digestive tract - are astounding. Among major milestones are the dual brain-gut relationship, i.e. the comprehensive expression of gastrointestinal hormones as potent transmitters in central and peripheral neurons; the hormonal signaling from the enteroendocrine cells to the brain and other extraintestinal targets; the role of gut hormones as growth and fertility factors; and the new era of gut hormone-derived drugs. Accordingly, gastrointestinal hormones have pathogenetic roles in major metabolic disorders (diabetes mellitus and obesity); in tumor development (common cancers, sarcomas, and neuroendocrine tumors); and in cerebral diseases (anxiety, panic attacks, and probably eating disorders). Such clinical aspects require accurate pathogenetic and diagnostic measurements of gastrointestinal hormones - an obvious responsibility for clinical chemistry/biochemistry. In order to obtain a necessary insight into today's gastrointestinal endocrinology, the chapter will first describe the advances in gastrointestinal endocrinology in a historical context. The history provides a background for the subsequent description of the present biology of gastrointestinal hormones, and its biomedical consequences - not least for clinical chemistry/biochemistry with its specific responsibility for selection of appropriate assays and reliable measurements.


Asunto(s)
Endocrinología , Hormonas Gastrointestinales , Humanos , Hormonas Gastrointestinales/historia , Hormonas Gastrointestinales/metabolismo , Tracto Gastrointestinal/metabolismo , Endocrinología/historia , Transducción de Señal , Biología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...